Tritium Transport in Poloidal Flows of a Dcll Blanket

نویسندگان

  • M. J. Pattison
  • S. Smolentsev
  • R. Munipalli
  • M. A. Abdou
چکیده

In a Dual-Coolant Lead-Lithium (DCLL) blanket, tritium losses from the PbLi into cooling helium streams may occur when the liquid-metal breeder is moving in the poloidal ducts. Quantitative analysis of the mass transfer processes associated with the tritium transport in the breeder as well as tritium diffusion through the structural and functional materials is important for two main reasons. The first is that there can be a substantial cost in extracting tritium from helium. The second is that tritium can make its way from the helium stream into the environment. In the present study, we analyze tritium transport in the front section of the DCLL DEMO-type Outboard blanket, where PbLi moves poloidally in a rectangular duct with an insulating flow channel insert (FCI) in the presence of a strong plasma-confining magnetic field. This involves two steps, the computation of the flow field with an MHD code, followed by the solution of the mass transfer equation with a newly-developed transport code CATRYS. The analyses included a sensitivity study to investigate how uncertainties in the properties of the materials (diffusion coefficient, solubility constant) affect the results and to assess the effect of an impervious crystalline sealing layer on the FCI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Pressure Equalization Slot in Flow Channel Insert on Tritium Transport in a Dcll-type Poloidal Duct

A SiC-based flow channel insert (FCI) is used as an electrical and thermal insulator in the Dual Coolant Lead Lithium (DCLL) blanket. To reduce the stress of the FCI structural material, the pressure equalization slot (PES) is implemented in the FCI wall. However, the PES affects the tritium transfer behavior and loss rate. Therefore it is important to examine the tritium loss rate and ensure i...

متن کامل

Numerical analysis of MHD flow and heat transfer in a poloidal channel of the DCLL blanket with a SiCf/SiC flow channel insert

MHD flow and heat transfer have been analyzed for a front poloidal channel in the outboard module of a Dual Coolant Lithium Lead (DCLL) blanket, with a flow channel insert made of a silicon carbide composite. The US reference DCLL blanket module [C. Wong, S. Malang, M. Sawan, S. Smolentsev, S. Majumdar, B. Merrill, D.K. Sze, N. Morley, S. Sharafat, P. Fogarty, M. Dagher, P. Peterson, H. Zhao, S...

متن کامل

UWFDM-1395 Improvements to the Helium Flow Path in the US DCLL ITER Test Blanket Module

Computational fluid dynamics simulations have demonstrated flow problems within the helium flow path in the current US DCLL ITER test blanket module design. New geometry for the helium flow path has been designed that will improve flow evenness and simplify the overall helium flow path within the test blanket module while maintaining the overall test blanket module geometry. Global changes to t...

متن کامل

MAGNETOHYDRODYNAMIC AND THERMAL ISSUES OF THE SiCf0SiC FLOW CHANNEL INSERT

In the dual-coolant lead lithium (DCLL) blanket, the key element is the flow channel insert (FCI) made of a silicon carbide composite (SiCf /SiC), which serves as electric and thermal insulator. The most important magnetohydrodynamic (MHD) and thermal issues of the FCI, associated with MHD flows and heat transfer in the poloidal channel of the blanket, were studied with numerical simulations us...

متن کامل

QUANTIFICATION OF DOMINATING FACTORS IN TRITIUM PERMEATION IN PbLi BLANKETS

In this paper the problem of tritium transport in PbLi (Lead-Lithium) blankets has been studied and analyzed by means of our recently developed computational models. Several simulations are performed by incorporating the geometric configurations of the PbLi blankets including both DCLL (Dual Coolant Lead Lithium) and HCLL (Helium Cooled Lead Lithium) blankets. Tritium permeation loss percentage...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011